
HORIZON-EUROHPC-JU-2023-COE 1 January 2024– 31 December 2026

Grant Agreement No 101143931

Selected performance assessments
using Extrae and Paraver

Marta Garcia-Gasulla, BSC

• The ecosystem of BSC performance tools
• Extrae

• Paraver

• Dimemas

• Show case of a performance analysis using the BSC performance tools

2

Content

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24)

3

The ecosystem of BSC performance tools

1..n

code

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24)

Basic
analysis

Clustering

+ clusterID

Paraver

Dimemas Tracking

Extrae
.prv

.prv

.prv

Extrae

Determining Parallel Application Execution Efficiency and
Scaling using the POP Methodology (ISC24) 4

• Tracing library transparent to the application

• Platform agnostic

• Parallel programming models:
• MPI, OpenMP, pthreads, OmpSs, CUDA, OpenCL, Java, Python

• Hardware counters
• Through PAPI

• Link to source:
• Callstack at MPI routines
• OpenMP outlined routines
• Selected user functions (Dyninst)

• Periodic sampling

• User friendly API to annotate your code with custom events

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 5

Extrae

• Symbol substitution through LD_PRELOAD

• Specific libraries for each runtime and combinations
• MPI

• OpenMP

• OpenMP+MPI

• ...

• Detailed configuration in XML file

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 6

How to use Extrae

export LD_PRELOAD=$EXTRAE_HOME/lib/libmpitrace.so

libmpitrace.so

libmpitracecf.so

libmpitracef.so

libompitrace.so

libompitracecf.so

libompitracef.so

libomptrace.so

libptmpitrace.so

libptmpitracecf.so

libptmpitracef.so

libpttrace.so

libseqtrace.so

export EXTRAE_CONFIG_FILE=../extrae.xml

Paraver

Determining Parallel Application Execution Efficiency and
Scaling using the POP Methodology (ISC24) 7

8

Paraver

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24)

.prv

• (Performance) Data Browser
• Any kind of timestamped data

• Trace Visualization and analysis

• Trace manipulation

• Flexible
• No pre-assumed semantics

• Fully programmable

• 2 Kind of views:
• Timeline

• Histograms, 2D and 3D tables

• Multiple loaded traces
• Allow comparative analysis

Timelines

Histograms / tables

Separate the What from the How

• What -> Semantics
• Which event to visualize

• Which value to use

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 9

Timelines

• How -> Visual representation

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 10

Histograms

• Traces can be manipulated
• Chop: cut in time or processes

• Filter: Subset of records based on…
• ... duration, type, value…

• The output is still a Paraver trace

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 11

Trace Manipulation

• Change parameters from the
machine:
• Network: Latency, bandwidth

• CPU frequency

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 12

Dimemas
Actual run

Ideal run

Nominal run

Low latency

Performance analysis of a hybrid
code with BSC tools

Determining Parallel Application Execution Efficiency and
Scaling using the POP Methodology (ISC24) 13

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 14

Structure and Focus of Analysis (FoA)

Computation Gather/Reduction

M
P

I c
al

ls

U
se

fu
l d

u
ra

ti
o

n

Initialization

Randomly distributed
communication for other ranks.

Rank 1 seems to be always
in communication

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 15

Efficiency metrics

Scaling number of processes (48  384)
Keeping constant number of threads (4)

Main factors affecting scalability:
- Load Balance
- Communication efficiency

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 16

Who to blame MPI or OpenMP?

Very low MPI parallel efficiency due
to Load Balance and Serialization

OpenMP better parallel
efficiency, still a trend to
decrease

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 17

Communication pattern

Only Master-Slave
communication

R
an

k
6

 R
an

k
1

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 18

Communication pattern

Work petition New work reception

Only Master-Slave
communication

R
an

k
6

 R
an

k
1

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 19

Communication pattern

Worker rank do useful
computation at all threads

The threads of the master
process don’t perform

useful computation

Gaps happen when one
thread has longer useful

computation.

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 20

Load Imbalance

Several, not useful gaps
randomly distributed

Load Imbalance at the end

Several, not useful gaps
randomly distributed

High variability in useful
duration

Long Bursts distributed
among all processes

Long Bursts appear
more in the “center”

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 21

The source of the Load imbalance

The amount of
instructions correlates
with the burst duration.

Load balance seems to come
due to more instructions.
Hence more code execution.

On the other hand, the
cycles and IPC are stable for
most bursts.

Useful duration

instructions

Cycles per us

IPC

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 22

Load imbalance in detail

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 23

Load imbalance in detail

MPI Load Imbalance

One burst of compute takes a lot
much longer than the others

OpenMP Load Imbalance

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 24

Load imbalance
maxMpiChunkSize: 50 10

Overall Worst Load Balance

We tradeoff the OpenMP
Load Balance for the MPI

MPI grain reduction
Application parameter to

set size of chunk sent.
Reduce it to improve MPI

Load imbalance

• Main issue caused by unpredictable long chunks of computation
• Affects both MPI and OpenMP

• Suggestions:
• OpenMP: Avoid synchronization between threads when asking for more work

to the master

• MPI and OpenMP: Implement a “guided like” distribution of work by the
master process. Bigger chunks at the beginning of the execution smaller at
the end

• MPI: “Kill” long computations at the end of the execution if there is no more
work to do.

• After the implementation of the optimizations the execution in 16
nodes was 3x times faster

Determining Parallel Application Execution Efficiency and Scaling using the POP Methodology (ISC24) 25

Conclusions

26

Contact:
 https://www.pop-coe.eu
 pop@bsc.es
 @POP_HPC
 youtube.com/POPHPC

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101143931. The JU receives
support from the European Union’s Horizon Europe research and innovation programme and Spain, Germany, France, Portugal and the Czech Republic.

Performance Optimisation and Productivity 3
A Centre of Excellence in HPC

Determining Parallel Application Execution Efficiency and
Scaling using the POP Methodology (ISC24)

